Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




AI Detects COVID-19 in Lung Ultrasound Images

By HospiMedica International staff writers
Posted on 21 Mar 2024

During the onset of the pandemic, utilizing artificial intelligence (AI) to identify signs of COVID-19 in lung ultrasound images proved challenging due to limited patient data and a nascent understanding of the disease's manifestations. Though computational tools were applied to help detect COVID-19 from these images, the risk of misdiagnosis was high without adequately training and validating the AI to recognize features specific to COVID-19 in the lungs. Now, new research has led to the development of an AI tool that is capable of identifying COVID-19 in lung ultrasound images, similar to how facial recognition technology identifies faces in a crowd.

The AI tool developed by researchers at Johns Hopkins (Baltimore, MD, USA) is a deep neural network, a type of AI designed to mimic the interconnected neurons that enable the brain to recognize patterns, understand speech, and complete complex tasks. The AI tool employs algorithms to scan through lung ultrasound images for spotting features known as B-lines. These features are visible as bright, vertical abnormalities and are indicators of inflammation in patients with pulmonary complications. By learning from a combination of real and simulated data, it detects abnormalities in ultrasound scans that indicate a person has contracted COVID-19.

The findings of the research significantly enhance AI's role in medical diagnostics, helping healthcare professionals to promptly diagnose COVID-19 and other lung diseases. In addition to providing clinicians with the tool to rapidly assess the overwhelming number of patients in emergency rooms during a pandemic, the tool also paves the way for the development of wearables to monitor illnesses such as congestive heart failure, which can result in fluid overload in patients’ lungs, similar to COVID-19.

“We developed this automated detection tool to help doctors in emergency settings with high caseloads of patients who need to be diagnosed quickly and accurately, such as in the earlier stages of the pandemic,” said Muyinatu Bell, the John C. Malone Associate Professor of Electrical and Computer Engineering, Biomedical Engineering, and Computer Science at Johns Hopkins University. “Potentially, we want to have wireless devices that patients can use at home to monitor progression of COVID-19, too.”

“Early in the pandemic, we didn’t have enough ultrasound images of COVID-19 patients to develop and test our algorithms, and as a result our deep neural networks never reached peak performance,” said Lingyi Zhao, who developed the software while a postdoctoral fellow in Bell’s lab. “Now, we are proving that with computer-generated datasets we still can achieve a high degree of accuracy in evaluating and detecting these COVID-19 features.”

Related Links:
Johns Hopkins

Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Temperature Monitor
ThermoScan Temperature Monitoring Unit
Silver Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Radiology System
Riviera SPV AT
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Miniaturized electric generators based on hydrogels for use in biomedical devices (Photo courtesy of HKU)

Hydrogel-Based Miniaturized Electric Generators to Power Biomedical Devices

The development of engineered devices that can harvest and convert the mechanical motion of the human body into electricity is essential for powering bioelectronic devices. This mechanoelectrical energy... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.